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Abstract

The Air Force images space-borne objects from the ground with optical systems that

suffer from the effects of atmospheric turbulence.  Many image processing techniques

exist to alleviate these effects, but they are computationally complex and require large

amounts of processing time.  A faster image processing system would greatly improve

images of objects observed through the turbulent atmosphere and help national strategists

glean higher quality intelligence on other nations’ space platforms.  One promising

mathematical method to decrease the computational complexity of image processing al-

gorithms involves symmetric convolution.  Symmetric convolution is a recently discov-

ered property of trigonometric transforms that allows the convolution of sequences to be

calculated through point multiplication in the trigonometric transform domain.  This

method holds distinct advantages over existing matrix techniques.  The versions of the

transform matrices for symmetric convolution are similar but not exactly equal to stan-

dard unitary versions of trigonometric transforms.  This paper demonstrates relationships

between the two types of transform matrices, and then uses the new relationships to de-

rive forms of the symmetric convolution-multiplication property based on unitary rather

than convolutional forms of the transform matrices.  It further describes how image proc-

essing algorithms based on unitary transforms can be included in future-generation opti-

cal surveillance systems.
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Chapter 1

Introduction

The Air Force has a need to image space-borne objects from the ground.1  Air Force

analysts can use these images to discern details about the capabilities of an adversary’s

satellite systems.  National level strategists can use images of space-borne platforms to

verify compliance with existing treaties on nonproliferation of space-based weapons.

When trained on our own satellites, ground-based imaging systems can also provide sat-

ellite maintainers information about the health and well-being of our own systems.  Ad-

ditionally, the Air Force has recently entered a joint venture with the Jet Propulsion

Laboratory to detect and classify the orbits of asteroids that may approach the orbital

plane of the earth.2

One factor severely limiting the performance of ground-based optical systems is at-

mospheric turbulence.3  The constant motion of different layers of the atmosphere causes

the indices of refraction within those layers to change, which in turn causes scattering of

the light captured within the aperture of a telescope on the ground.  This scattering causes

images to appear much more blurred than if the turbulent effects of the atmosphere were

not present.  The objective of this research is to demonstrate new techniques that the Air

Force can use to improve its methods of collecting information on space-borne objects.
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The process of restoring a degraded image is referred to as image reconstruction.4  A

variety of mathematically complex convolutional techniques exist to perform image re-

construction via filtering.  Symmetric convolution is a recently discovered property5 of

discrete trigonometric transforms that allows for the filtering of images to be calculated

through point multiplication in the trigonometric transform domain at a tremendous sav-

ings in computational complexity over computing the convolution sum directly.  Sym-

metric convolution has already been demonstrated as a method to mathematically en-

hance existing image reconstruction techniques.6  The existing form of the symmetric

convolution-multiplication property is, however, somewhat limited in that the versions of

the transform matrices for symmetric convolution are similar but not exactly equal to the

standard unitary versions of trigonometric transforms.

This paper demonstrates a relationship between the two types of trigonometric trans-

form matrices—convolutional and unitary.  It then proves how the new relationships can

be used to derive forms of the symmetric convolution-multiplication property based on

unitary rather than convolutional forms of the transform matrices.  The paper further de-

scribes how image processing algorithms based on unitary transforms can be included in

future-generation optical surveillance systems to improve existing image reconstruction

techniques used by the Air Force.

The objectives of this research are directly related to the Air Force’s core compe-

tency of information superiority.  Air Force Doctrine Document 1 (AFDD-1) defines in-

formation superiority as “the ability to collect, control, exploit, and defend information

while denying an adversary the ability to do the same.”7  The results of this research will

help the Air Force in its efforts to collect information by improving techniques to miti-
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gate the effects of atmospheric turbulence.  The end results of these efforts will enhance

the Air Force’s function as “the major operator of sophisticated air- and space-based in-

telligence, surveillance, and reconnaissance systems and [as] the Service most able to

quickly respond to the information they provide.”8

The remainder of this paper is organized to provide the reader with enough informa-

tion to understand the problem as well as grasp the benefits offered by symmetric con-

volution.  Chapter 2 contains general background information on how the Air Force cur-

rently images space-borne objects from the ground.  Chapter 3 provides technical back-

ground information on image reconstruction, symmetric convolution and the discrete

trigonometric transforms, and on how symmetric convolution can be used to perform im-

age reconstruction.  Chapter 4 derives the relationship between convolutional and unitary

discrete trigonometric transforms by first demonstrating that diagonal matrices exist

which relate the two versions, and then proving that new vector-matrix forms of the

symmetric convolution-multiplication property exist that are based on unitary rather than

convolutional discrete trigonometric transforms.  Chapter 5 gives a proposal for how im-

age processing algorithms based on the new unitary versions of the symmetric convolu-

tion-multiplication property can be included in future-generation optical surveillance

systems with faster processing times and improved image quality.  Chapter 6 summarizes

the findings and outlines directions for future research.
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Chapter 2

General Background

This chapter provides general background information on existing Air Force meth-

ods for imaging space-borne objects from the ground.  In particular, it discusses Air

Force efforts to use adaptive optics systems and laser beacons to reduce the effects of at-

mospheric turbulence as well as describing post-processing techniques to reconstruct im-

ages.

As was stated earlier, the effects of turbulence on light passing through the atmos-

phere create this imaging problem.  To illustrate the severity of the problem, consider that

“at [one of] the best observing sights—in Hawaii…—where there are telescopes of up to

10 meters in diameter, turbulence still limits the resolution to the equivalent of that

achieved by a telescope only 10 cm in diameter [without turbulence].”1  By comparison,

the Hubble space telescope, which obviously does not suffer from the degrading effects

of atmospheric turbulence, is only 2 meters in diameter but cost a great deal to launch

into orbit.  Bigger telescopes on the ground allow more light to pass through their aper-

tures—a necessary feature to image dim objects.

One technique to reduce the effects of atmospheric turbulence is through the use of

adaptive optics.  Adaptive optics systems use a wavefront sensor to measure the scatter-

ing from a bright object in the vicinity of the object to be imaged.  The system sends
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control signals to a series of actuators that physically adjust the contour of a telescope’s

deformable mirror to correct for the perturbations caused by the atmosphere.2  The sys-

tem must correct itself about 100 times each second to keep up with the rate of changes in

the atmosphere.

In a recent Scientific American article,3 John Hardy, a pioneer of adaptive optics re-

search who recently retired from Litton Itek Optical Systems, describes the history of the

first operational adaptive optics system.  He states that the project began in the 1970s as a

Defense Advanced Research Projects Agency (now ARPA) effort to better identify the

high numbers of military satellites the Soviet Union was launching at the time.  He claims

that after testing a prototype system with 21 actuators in December 1973, ARPA next in-

stalled an adaptive optics system employing 168 actuators on a 1.6 meter telescope atop

Mount Haleakala in Maui, Hawaii in 1980.  The system was first tested in the spring of

1982 with impressive results, especially for images of binary star pairs.4

Today Mount Haleakala is home to the Air Force Research Laboratory’s (AFRL’s)

research and development efforts on the Maui Space Surveillance System (MSSS) at the

Maui Space Surveillance Complex (MSSC), formerly the Air Force Maui Optical Station

(AMOS).5  The MSSS instruments all suffer from the effects of atmospheric turbulence

despite the fact that the ten thousand foot elevation of the complex, the dry climate, and

freedom from background light pollution all allow unsurpassed detection of satellites,

missiles, man-made orbital debris and astronomical objects.6

In a recent Physics Today article,7 Laird Thompson, professor of astronomy at the

University of Illinois at Urbana-Champaign, reports on recent advances in adaptive optics

including Air Force efforts at the Starfire Optical Range (SOR) in New Mexico.  He also
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provides background information on a technique that provides an alternative to the re-

quirement of an adaptive optics system to have a bright object in the vicinity of the object

being imaged.  This technique uses a laser beacon or guide “star” which is a beam of la-

ser light shot into the night sky that scatters off molecules in the stratosphere at altitudes

of 10–20 km.  The scattered light creates the same effect as a bright natural star on the

order of 0.1 magnitude.  Previous adaptive optics systems required a natural star in the

vicinity of the object to be imaged to measure the turbulence with a wavefront sensor.

Thompson further discusses research efforts to use experimental lasers to scatter light off

sodium atoms in the mesosphere at altitudes of 95 km.  The higher altitude would de-

crease the amount of anisoplanatism or angular error in the laser guide star reference.

Thompson describes the explosive growth of adaptive optics and laser guide star research

in the early part of this decade:

What astronomers thought in the late 1980s would be an evolutionary drift
toward adaptive optics turned into a veritable revolution in the spring of
1991, when US military researchers stepped forward to announce that they
too had been investing in both adaptive optics and laser-guide star re-
search.8

Thompson gives three reasons he suspects led to the military’s decision to release infor-

mation on its efforts at adaptive optics and laser guide star research.  He offers that Euro-

pean researchers had prototyped an infrared adaptive optics system, his own team at the

University of Illinois had published the results of successful experiments using laser

guide stars, and these results coincided with the end of the cold war.  Figure 1 from the

AMOS webpage9 shows a laser guide star in action on the top of Mount Haleakala.  The

system in use is known as SWAT (for short wavelength adaptive technique).10  Accord-
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270, no. 6 (June 1994):  60–65.

4 Ibid., 63.
5 “Air Force Research Laboratory’s Mission on Maui,” AMOS WWW Homepage,

29 April 1998, n.p.; on-line, Internet, available from http://ulua.mhpcc.af.mil.
6 Ibid.
7 Laird A. Thompson, “Adaptive Optics in Astronomy,” Physics Today 47, no. 12

(December 1994):  24–31.
8 Ibid., 27.
9 AMOS WWW Homepage.
10 Hardy, 65.
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Figure 1.  AMOS Observatory

ing to Hardy,1 this system was proposed by Robert Fugate of Phillips Laboratory and de-

veloped by researchers at M.I.T. Lincoln Laboratory.

In addition to adaptive optics with natural or artificial guide stars, another method of

performing image reconstruction is to use image processing.2  Similar to adaptive optics

techniques, some image processing systems can measure the effects of atmospheric per-

turbations, and then use a computer to correct for the effects of the distortion.  Such sys-

tems are often called post-processing systems since they perform their calculations “after

the fact” instead of “on the fly” as for adaptive optics systems.  Other image processing

techniques require no a priori knowledge of the turbulence.  They do not require a wave-

front sensor to measure the turbulence, and instead apply nonlinear iterative algorithms to

deduce both a turbulence-compensated image and a mathematical model of the turbu-

lence that caused the degradation in the original image.3  Still other image processing

techniques are linear in nature, i.e. they can correct an image in a single direct iteration,

but they require knowledge of at least the statistics of the turbulence degrading the im-

age.4  These techniques require fewer computations than iterative techniques, but they

suffer from poorer performance than either wavefront sensor processing, iterative proc-

essing, or adaptive optics.

The tradeoff between computational complexity vs. higher performance image re-

construction algorithms is a problem of interest to the developers of the next generation

of Air Force optical systems.  The computational speed of adaptive optics systems limits

the number of frames or snapshots that the system can obtain each second.  The faster a

processor can perform its calculations on turbulence measurements, the faster the system
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can provide updates on changing atmospheric conditions.  Similarly, the faster a post-

processing technique can generate a turbulence-compensated image, the faster the image

can be sent to analysts and the quicker the computer can be turned over to perform cal-

culations on other images.

The mathematical relationships derived in later chapters of this paper can help im-

prove the performance of Air Force systems using adaptive optics by increasing the speed

of transform domain calculations used to correct for turbulence.  The results of this re-

search stand to pose an even greater benefit to linear systems that perform image post-

processing, because they can speed up each calculation within an iterative algorithm.

These improvements also benefit linear direct-calculation systems, not only because they

perform calculations quicker, but also because the trigonometric transforms upon which

they are based have performance advantages over other more conventional transforms.5

This chapter has provided a brief introduction to how the Air Force images space-

borne objects from the ground.  Prior to proceeding with the derivations contained in later

chapters, it is first necessary to present some mathematical background information in the

next chapter.

Notes

1 Ibid.
2 Roggemann and Welsh, Chapter 4, 123–168.
3 Both
G.R. Ayers and J.C. Dainty, “Iterative Blind Deconvolution Method and its Applica-

tions,” Optics Letters 13, no. 7 (July 1988):  547–549.
and
B.L.K. Davey, R.G. Lane, and R.H.T. Bates, “Blind Deconvolution of Noisy Com-

plex-Valued Image,” Optics Communications 69, no. 5,6 (January 15, 1989):  353–356.
describe iterative techniques to solve this problem known as blind deconvolution.
4 For early work on least-squares linear filtering, see
Carl W. Helstrom, “Image Restoration by the Method of Least Squares,” Journal of

the Optical Society of America 57, no. 3 (March 1967):  297–303.
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David Slepian, “Linear Least-Squares Filtering of Distorted Images,” Journal of the
Optical Society of America 57, no. 7 (July 1967):  918–922.

and
William K. Pratt, “Generalized Wiener Filter Computation Techniques,” IEEE

Transactions on Computers C-21, no. 7 (July 1972):  636–641.
Excellent summaries of these types of techniques appear in
Anil K. Jain, Fundamentals of Digital Image Processing.  (Englewood Cliffs, N.J.:

Prentice-Hall, 1989), Chapter 8, 267–341.
and
Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing.  (Reading,

Mass.:  Addison-Wesley, 1992), Chapter 5, 253–305.
5 Jain, 150–155.
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Chapter 3

Technical Background

This chapter lays the technical foundation upon which the derivations in the follow-

ing chapter are based by establishing a consistent mathematical notation and presenting

the results of previous research related to symmetric convolution and its applications for

image reconstruction.  The following sections supply theoretical information on the basic

image reconstruction problem, symmetric convolution and the discrete trigonometric

transforms (DTTs), and a discussion on how the symmetric convolution-multiplication

property can be applied to improve linear image reconstruction techniques.

Image Reconstruction

Image reconstruction is the process of restoring degraded images.1  An imaging sys-

tem typically measures a blurred, noisy image of an object.  In the problem of imaging

space-borne objects from the ground, the blurring is caused by the turbulent atmosphere

which has a severe degrading effect on the quality of images2 and random noise that is

always present in image detection systems.3  The system must then apply image recon-

struction techniques to recover an estimate of the object from its blurred, noisy version.

One technique used to perform this task is linear filtering.

To help illustrate how a filter can recover an estimate of an object from its distorted,

noisy version, consider the imaging scenario in Figure 2.  In the figure, the two-dimen-
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Figure 2.  Imaging Scenario

sional sequence ),( 21 nnθ  represents the original object, where the indices 1n  and 2n  cor-

respond to an ordering of the pixels of the image.  The two-dimensional sequence

),( 21 nnh  represents the point spread function of the system blurring the object.  Optical

scientists and engineers refer to the two-dimensional impulse response of the degrading

system as its point spread function.  The name arises from the blurring or spreading of

individual points comprising the object.4  The scenario adds noise represented by the se-

quence ),( 21 nnw  to produce the received data sequence =),( 21 nnd ),( 21 nnh ),( 21 nnθ∗

).,( 21 nnw+   The asterisk, *, denotes the convolution operation, which can also be ex-

pressed as5

∞

−∞=

∞

−∞=

−−=∗
1 2

).,(),(),(),( 2211212121

m m

nmnmhmmnnnnh θθ (1)

The recovery filter in the scenario has a two-dimensional impulse response, ),,( 21 nnf  so

that the estimate of the object is =),(ˆ 21 nnθ ).,(),( 2121 nndnnf ∗   The goal of image re-

construction with a linear filter is to find the impulse response of the recovery filter,

),,( 21 nnf  which produces the best possible estimate ).,(ˆ 21 nnθ

θ( , )n n1 2

h n n( , )1 2

w n n( , )1 2

d n n( , )1 2

f n n( , )1 2

�( , )θ n n1 2



14

If the sequences in Eq. (1) are spatially limited to 21 NN ×  pixels, then an easier way

to calculate the convolution sum is to first convert each sequence into its discrete Fourier

transform (DFT) representation, ),,( and ),( 2121 kkkkH Θ  where6
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A well-known property of DFTs states that convolution in the spatial domain is equiva-

lent to point-wise multiplication in the transform domain of the DFTs.7  It thus requires

fewer calculations to perform the two DFTs in Eq. (2), compute the product ),( 21 kkH

),,( 21 kkΘ×  and then perform an inverse DFT to yield the same result as Eq. (1).  Hunt8

has shown the summations in Eqs. (1) and (2) can be expressed as a vector-matrix multi-

plication, and that matrices representing the DFT operation can diagonalize a matrix rep-

resenting the convolution operation.

Another family of transforms that are similar to the DFT and useful for image proc-

essing are the discrete cosine and sine transforms (DCTs and DSTs).9  Until recently no

convolution-multiplication property existed for the discrete trigonometric transforms

(DTTs), so their application to image reconstruction filtering is a relatively new concept.

Symmetric Convolution and the Discrete Trigonometric Transforms

The discrete cosine transform was first introduced in 1974.10  Since then it has been

expanded into an entire family of trigonometric transforms11 consisting of sixteen DTTs

which are even and odd-length versions of the DSTs and DCTs.  Another characteristic
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of the family of DTTs is that each transform is one of four types (I–IV) that impose half-

sample shifts in the input or output indices of the sine and cosine transforms.  A type-I

trigonometric transform imposes no shift to either the input or the output sequence indi-

ces.  A type-II transform imposes a half-sample shift to just the input index.  A type-III

transform imposes a half-sample shift to just the output index.  A type-IV transform im-

poses a half-sample shift to both the input and the output indices.  The fact that these four

transforms require either no shift or a half-sample shift is related to the idea of the point

of symmetry in the symmetric extension of a finite sequence.  The point of symmetry can

be either an end point of the sequence or a point which lies one-half sample beyond the

end point of the sequence.

There are four ways to symmetrically extend a finite sequence about a single point of

symmetry.  These are whole-sample symmetry (WS), whole-sample antisymmetry (WA),

half-sample symmetry (HS), and half-sample antisymmetry (HA).  An example of each

appears in Figure 3.  Note that the point of symmetry for the WS sequence is the end

point in the finite sequence before extension, and the point of symmetry for the WA sequ-

Figure 3.  Four Ways to Symmetrically Extend a Finite Sequence12

WS

n0

WA

n0

HS

n0

HA

n0
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ence is a zero that must appear after the end point before extension.  The points of sym-

metry for both the HS and HA sequences lie one-half sample beyond the end points in

each finite sequence before extension.

There are 16 symmetric periodic sequences (SPS's) which result from symmetrically

extending a finite sequence to the left using one of the four ways and to the right using

possibly a different way.  A convention for naming each of the 16 SPS's is to label first

the left symmetric extension and then the right symmetric extension.  For example, a

WSHA sequence would exhibit whole-sample symmetry to the left and half-sample anti-

symmetry to the right.  A one-to-one correspondence exists between the sixteen types of

SPS’s and the sixteen DTTs.13

Martucci14 has recently developed a convolution-multiplication property for the

family of DTTs based upon the underlying symmetry of each DTT.  He defines symmet-

ric convolution as the form of convolution for DTTs.  The symmetric convolution-

multiplication property states that an inverse trigonometric transform of the product of

the trigonometric transforms of two sequences yields the same result as the symmetric

convolution of the two sequences.15  The symmetric convolution-multiplication property

exists for forty different combinations of the sixteen transforms in the DTT family based

on the underlying symmetric periodicities of the different DTTs.

In the derivation of his symmetric convolution-multiplication property, Martucci16

slightly redefines each of the DTTs into what he refers to as their convolutional versions.

The modifications are necessary to relate each DTT to the more generalized DFT of Bon-

giovanni et al.17 upon which Martucci’s derivation is based.  Definitions for each of the

sixteen convolutional versions and for each of the more traditional versions of the DTTs
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appear in Appendix A.  Note that the traditional versions of the DTTs are all represented

by unitary matrices.  An NN ×  unitary matrix, U, has the property that ,1−= UU T  or

equivalently ,N
T IUU =  where the superscript ‘T’ indicates the transpose of a matrix and

the matrix NI  is an NN ×  identity matrix.

Martucci defines forty cases of the symmetric convolution-multiplication property

based on the sixteen convolutional versions of the DTTs listed in Appendix A.  Just as

Hunt18 presented a vector-matrix relationship for the convolution-multiplication property

of the DFT, recent research19 has revealed diagonal forms of the symmetric convolution-

multiplication property for each of the forty cases of symmetric convolution.  Sánchez et

al. have previously demonstrated the existence of diagonal forms of the convolutional

versions of the DTTs,20 but their results reveal diagonalizing forms for only sixteen of the

forty cases of symmetric convolution—one case of symmetric convolution for each of the

sixteen transforms.  The vector-matrix forms of all forty cases appear in Appendix B.

The advantages to a vector-matrix form of each case include compactness of notation and

the fact that the property extends more easily to asymmetric multidimensional sequences

which is a necessary condition to apply the property to image reconstruction.

Image Reconstruction Using Symmetric Convolution

This section demonstrates results for the two-dimensional impulse response of a lin-

ear image reconstruction filter that is optimum in the mean-square sense for reconstruct-

ing images degraded by a known blurring function in the presence of additive noise.21

Such filters are commonly referred to as Wiener filters after the pioneering work of Nor-
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bert Wiener in the 1940s.22  Both Helstrom23 and Slepian24 have applied Wiener filters to

the least-squares image reconstruction problem.

Pratt25 has outlined the vector-matrix form of the image reconstruction problem

which is to find the filter represented as a matrix, F, that produces the vector estimate

Fd=θθθθ̂  arising from linearly corrupted data in noise from the relation =d wH +θθθθ  de-

picted graphically in Figure 2.  The estimate, ,θ̂θθθ  should be the estimate which minimizes

the mean-square error between the estimate and the original object vector, .θθθθ   The solu-

tion for the filter, F, that produces the minimum mean-square error estimate, ,θ̂θθθ  is well

documented in statistical signal processing texts26 as

[ ] ,1−+= ww
TT RHHRHRF θθθθ (3)

where wwRR  and θθ  are correlation matrices for the object and noise respectively.

The trigonometric transform domain realization of Eq. (3) then becomes
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where the script letters denote that the quantities lie in the trigonometric transform do-

main and the subscripts ‘ss’ indicate the relation holds only for functions possessing

whole-sample symmetry in both spatial dimensions.  Note that Eq. (4) is a scalar and not

a matrix relation.  The scalar nature of Eq. (4) arises because the vector-matrix form of

the symmetric convolution-multiplication property produces a diagonal matrix in the

transform domain, and also because the type-II DCT produces a nearly diagonal correla-

tion matrix in the transform domain for an image with highly correlated pixels.27  This
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fact is significant because scalar relations require far fewer calculations to implement

than matrix relations.

One limitation of Eq. (4) is that it is only valid for the convolutional versions of the

DTTs.  The unitary versions of the DTTs are more common and hardware exists to incor-

porate fast implementations of the transforms.  The next step in this process is to derive

forms of the symmetric convolution-multiplication property based on unitary rather than

convolutional versions of the DTTs.  This derivation will be the primary focus of the next

chapter.
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Chapter 4

Relationship between Convolutional and Unitary Transforms

This chapter presents the mathematical relationship between the convolutional ver-

sions of the discrete trigonometric transforms (DTTs) and the more common unitary ver-

sions of the DTTs.  For nine out of the sixteen transforms in the DTT family, the relation-

ship is diagonal.  The diagonal matrices which relate the two versions of the DTTs then

allow the vector-matrix form of the symmetric convolution property to be cast in terms of

unitary rather than convolutional transforms.1

Diagonal Matrices Relating the Two Versions

This section demonstrates the relationships between each of the sixteen convolu-

tional DTTs and their unitary counterparts.  Consider the following matrix relationships

between convolutional and unitary DTT matrices:

ee I11 CAC = ee II22 CAC = ee III33 CAC = ee IV44 CAC =

ee I51 SAS = ee II62 SAS = ee III73 SAS = ee IV84 SAS =

oo I91 CAC = oo II102 CAC = oo III113 CAC = oo IV124 CAC =

oo I131 SAS = oo II142 SAS = oo III153 SAS = oo IV164 SAS = , (5)

where the matrices denoted by C  and S  represent discrete cosine and sine transform

(DCT and DST) matrices respectively.  The numeric subscripts ‘1–4’ represent DTT

transform types I–IV for the convolutional versions of DTT matrices, and the Roman

numeral subscripts ‘I–IV’ represent DTT transform types I–IV for the unitary versions of
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DTT matrices.  The subscripts ‘e’ and ‘o’ denote even and odd length versions of the

DTT matrices.  Complete definitions for the convolutional and unitary versions appear in

Appendix A.  The matrices 1A – 16A  relate the two versions for each of the sixteen DTTs.

To express symmetric convolution in terms of unitary transforms, only those matri-

ces from 1A – 16A  that are diagonal are useful for subsequent derivations because the ma-

trix form of symmetric convolution results in diagonal matrices in the trigonometric

transform domain.  It is straightforward to show by counterexample that the matrices ,1A

,3A  ,7A  ,9A  ,10A  ,11A  and 16A  are not, in general, diagonal.  To show that the matrix

2A  is, in general, diagonal, consider that the matrix eIIC  is unitary, i.e. ,IIII N
T

ee ICC =  an

NN ×  identity matrix, which allows the matrix 2A  to be written as .II22
T

eeCCA =   Re-

peating the definitions for the thnm −  elements of the NN ×  type-II even-length DCT

matrices from Appendix A, yields

[ ] �
�
�

� +=
N
nm

mne
)(cos2 2

1

2
πC , (6)

and [ ] �
�
�

� +=
N
nmk

N mmne
)(cos2 2

1

II
πC , (7)

for .1 , 1, 0,   , −= Nnm �   The constant, ,mk  in Eq. (7) differs from Wang and Hunt’s

definition,2 so that

�
� =

=
otherwise,     ,1

 ,0    ,2
1 Nm

km (8)

which follows the convention for Martucci’s convolutional versions.3  Equation (7) yields

a unitary matrix equivalent to Wang and Hunt’s definition4 for any even N.  It follows

from Eqs. (6) and (7) that
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N CC = (9)

The thnm −  element of the product T
ee II22 CCA =  is expressible as
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which after substituting the result of Eq. (9) becomes
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Because eIIC  is unitary, Eq. (11) can be recast as

[ ] ),(2
2 nm

k
N

m
mn −= δA (12)

where )( nm −δ  is a Kronecker delta function defined by
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From Eq. (12), 2A  is clearly diagonal with the general result for its thnm −  element

given by
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or more compactly, .2
2 Nk

N
m

IA =

Following similar derivations, it follows that ,284 NN IAA ==  ,2 15 −= NN IA

and Nk
N
m

IA 2
6 =  for any positive N even, and ==== 15141312 AAAA 112 −− NN I  for
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any positive N odd.  These derivations appear in Appendix C.  Note 62 AA ≠  even though

both have dimension ,NN ×  because 2A  is indexed from 0 to 1−N  and 6A  must be in-

dexed from 1 to N based on the index ranges of the type-II DCT and DST in the trigono-

metric transform domain.5

Thus, diagonal relationships exist for nine out the sixteen DTTs.  These diagonal re-

lationships then allow certain of the vector-matrix forms of the symmetric convolution-

multiplication property of the DTTs to be recast in terms of unitary transforms.

New Vector-Matrix Forms of Symmetric Convolution
Based on Unitary Transforms

To relate the above results to the vector-matrix forms of the symmetric convolution-

multiplication property, consider the following expression which represents just one of

the forty cases of symmetric convolution6 expressed in vector-matrix form:7

.2
1

2 1
θθθθee e

CCd CHHHH−= (15)

In Eq. (15), the vectors θθθθ and d  represent the input and output sequences, ),( and )( nnd θ

and the matrix { }r
WSWSee

hCC 1diag
1

=HHHH  is the diagonal matrix created by taking the even-

length convolutional type-I DCT of the vector r
WSWSh  which represents the right-half sam-

ples of a sequence )(nh  having whole-sample symmetry in both the left and right direc-

tions.8  Normally the vector r
WSWSehC1  contains 1+N  samples ranging from 0 to N, but

here only the first N samples from 0 to 1−N  need to be retained because the underlying

symmetry of the vector θθθθe2C  forces a zero at Nm =  which cancels the value of r
WSWSehC1

at .Nm =   A more thorough explanation of the underlying symmetry and zero values in-
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herent in symmetric convolution is given in two articles by Martucci.9  Thus each matrix

in Eq. (15) has compatible dimension .NN ×   Substituting the fact that =e2C eII2CA  into

Eq. (15) produces

.II2
1

2
1

II 1
θθθθee e

CAACd CHHHH−−= (16)

Recognizing that the three interior matrices in Eq. (16) are diagonal and therefore com-

mute, yields

,II
1

II 1
θθθθee e

CCd CHHHH−= (17)

which is the desired result based on unitary transform matrices for this particular case of

symmetric convolution.  A similar result to Eq. (17) based on operator notation first ap-

peared in a conference paper by Martucci.10  The development presented here follows a

matrix approach to derive not only this result but also results based on unitary transform

matrices for other cases of symmetric convolution.

Eighteen of the forty cases of symmetric convolution are expressible in terms of

unitary transform matrices.  The reason not all of the cases can be expressed in terms of

unitary transform matrices is because seven of the sixteen DTTs cannot have their con-

volutional and unitary versions related by a diagonal matrix.  Following a similar deriva-

tion as that producing Eq. (17), the following eighteen cases are based on unitary trans-

form matrices:

θθθθee e I
1

I 1
SSd CHHHH−= θθθθee e II

1
II 1

CCd CHHHH−= θθθθee e II
1

II 1
CSd SHHHH−=

θθθθee e II
1

II 1
SSd CHHHH−= θθθθee e II

1
II 1

SCd SHHHH−−= θθθθee e II
1

I 2
CSd SHHHH−=

θθθθee e IV
1

IV 3
CCd CHHHH−= θθθθee e IV

1
IV 3

CSd SHHHH−= θθθθee e IV
1

IV 3
SSd CHHHH−=

θθθθee e IV
1

IV 3
SCd SHHHH−−= θθθθoo o I

1
I 1

SSd CHHHH−= θθθθoo o I
1

II 2
SSd CHHHH−=

θθθθoo o II
1

II 1
SSd CHHHH−= θθθθoo o II

1
I 2

SSd CHHHH−= θθθθoo o III
1

III 3
SSd CHHHH−=

θθθθoo o IV
1

IV 3
CCd CHHHH−= θθθθoo o III

1
IV 4

SCd SHHHH−−= ,IV
1

III 4
θθθθoo o

CSd SHHHH−= (18)
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where the subscripts on the HHHH matrices indicate the type of DTT applied to the right-half

samples of the sequence )(nh  in each case.  All the derivations for the cases in Eq. (18)

appear in Appendix D.  The derivations for the cases with identical forward and inverse

unitary transforms are straightforward.  The derivations for the odd-length cases with dif-

ferent forward and inverse transforms occur because the matrices 12A – 15A  relating the

odd cases are all identical.  The remaining derivations, i.e. those for the even-length cases

with different forward and inverse transforms, use either the fact that the relating matrices

4A  and 8A  are identically equal, or they use the fact that the matrices ,2A  ,5A  and 6A

are identical for index values of 1 to .1−N

Equation (18) presents the symmetric convolution-multiplication property of DTTs

based on unitary rather than convolutional transforms for the eighteen out of forty total

cases where it exists.  The results based on unitary rather than convolutional transforms

are significant because many applications require the unitary version of the transform.

For example, a great deal of hardware on the market today performs image coding based

on unitary versions of the DCT and DST.  Now it is possible to perform filtering in the

transform domain of the DTTs, without having to first convert between the convolutional

and unitary versions of the transforms.

The following chapter shows how this new property has applications to the image re-

construction problem imposed by imaging through turbulence.
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Chapter 5

Proposal for Near-Real-Time Imaging System

To the casual observer, perhaps unfamiliar with the mathematical subtleties pre-

sented in the previous chapter, it might appear that these preliminary results are insignifi-

cant in that they simply replace a few numeric subscripts in a handful of equations with

Roman numeral subscripts.  On the contrary, the meaning behind the change of subscripts

is what is significant.  However, even the change itself would be purely a mathematical

contrivance were it not for the potential impact the change has to improve systems in the

real world.

This chapter presents some ideas for ways to improve existing methods of imaging

through turbulence.  The results derived in this paper can not only help the performance

of Air Force systems using adaptive optics, but they also pose an even greater benefit to

systems that perform image processing to correct for turbulence directly.

The techniques developed here can increase the speed of transform domain calcula-

tions used to correct for turbulence in adaptive optics systems.  The increase in speed

arises because for real sequences, like the pixels of an image, the trigonometric transform

domain coefficients are also all real, where they are complex in the Fourier domain.  Fast

algorithms exist for the discrete trigonometric transforms1 that operate with the same

number of floating point operations as fast Fourier transforms.2  These algorithms use on
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the order of NN 2log  operations to compute the transform of an image with N pixels.  It

follows in a straightforward manner that it is easier to perform filtering by using

NN 2log  operations to calculate the forward transform, calculating N multiplications in

the transform domain, and then performing NN 2log  operations to calculate the inverse

transform, than it is to compute the 22N  operations needed to perform convolution di-

rectly.  [Note the superscript ‘2’ indicates a squaring operation and not an endnote.]

The discrete trigonometric transforms present an additional savings in computational

complexity over discrete Fourier transforms, because the algorithms use all real arithme-

tic for a real-valued image.  Complex additions require twice the number of floating point

operations as real additions and complex multiplications typically require six times the

number of floating point operations as real multiplications.  Because images that are in

general asymmetric need to be decomposed into their four underlying symmetric parts,

the overall computational savings amounts to about two-thirds the speed of existing com-

plex-arithmetic algorithms.3

Embedded into the processor of an adaptive optics system, algorithms based on the

unitary versions of the discrete trigonometric transforms could speed up the refresh times

of the system, giving it more fidelity.  Being able to process measurements from wave-

front sensor readings in two-thirds the existing time could boost the measurement rate

from 100 to 150 Hz.  This increase would allow the system to adapt more quickly to

changing atmospheric conditions.

The results of the previous chapter can also improve techniques that perform image

processing to restore degraded images.  Image processing systems that measure the ef-

fects of atmospheric perturbations and then use a computer to correct for the effects of
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the distortion can also operate two-thirds faster than existing systems by using trigono-

metric rather than Fourier processing.  Other image processing techniques that do not

measure the turbulence, but instead apply nonlinear iterative algorithms to reproduce a

turbulence-compensated image, stand to benefit as well.  The overall algorithms will take

less time to converge because each iteration will require less processing time, and they

may converge in fewer iterations because trigonometric transforms provide better scalar

approximations than other transforms.4

Linear image processing systems that compute their estimated objects directly may

stand to show the most benefit from these new results by using unitary trigonometric

transforms to compute the convolution of an incoming image with the two dimensional

impulse response of a linear reconstruction filter in the trigonometric transform domain.

Since hardware based on the unitary versions of the discrete trigonometric transforms is

readily available, it is conceivable that future applications might lend themselves to a

real-time hardware systems rather than delayed computer post-processing.  A hardware-

based system would have tremendous advantages in speed of calculation, and could be

prototyped in a laboratory using off-the-shelf integrated circuits to perform the trigono-

metric transforms.

The improvements suggested here for the next generation of ground-based optical

sensors are well grounded in supporting military and national strategic aims.  The ideas

presented in this paper stand to help further develop the Air Force’s core competency of

information superiority5 by collecting vital information on our adversaries’ space-borne

systems.  These concepts also fit within the National Military Strategy’s charter to

“shape the international environment,” “respond to … crises,” and “prepare now for an
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uncertain future.”6  Part of shaping the international environment calls for “preventing or

reducing conflicts or threats,”7 and specifically mentions reducing the development of

technology related to weapons of mass destruction.8  The increased quality of the images

generated by this proposed system would help national level strategists to verify compli-

ance with existing treaties on nonproliferation of space-based weapons and enable them

to respond appropriately.  Joint Vision 20109 lists information superiority and technologi-

cal innovations—two areas to which this research relates—as supporting concepts ena-

bling the military forces of the future to achieve full spectrum dominance during peace-

time and war.  All of these military concepts derive from the National Security Strategy

Document, which discusses intelligence, surveillance, and reconnaissance and space as

two overarching capabilities that help the U.S. advance its national interests.10

Looking years ahead into the future, should space-based weapons become the norm,

then the system proposed here could provide space warfighters with near-real-time battle

damage assessment following attacks on enemy or friendly space systems.  On a final

note, besides their applications to optical systems, the technical results of this research

can also benefit other areas such as communications, signal processing, and control sys-

tems applications, even though the original focus of these efforts was derived specifically

for image reconstruction.
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Chapter 6

Conclusion

This research paper has documented a fundamentally new principle regarding image

reconstruction.  It has presented general background information on how the Air Force

images space-borne objects from the ground.  It has introduced readers to the mathemati-

cal concepts of image reconstruction, symmetric convolution and the discrete trigonomet-

ric transforms, and has shown how symmetric convolution can be used to perform image

reconstruction.  The results presented in this paper that relate the convolutional and uni-

tary trigonometric transforms and present unitary transform based versions of the sym-

metric convolution-multiplication property demonstrate a new contribution to the field.

This paper has proposed that image processing algorithms based on unitary trigono-

metric transforms and symmetric convolution would enhance existing image reconstruc-

tion systems.  Although symmetric convolution is a fairly recent discovery1 that has pre-

viously been applied to image reconstruction,2 it relies on a special convolutional form

for each of the sixteen discrete trigonometric transforms.  The results of this research cast

the symmetric convolution-multiplication property of the discrete trigonometric trans-

forms into the more traditional unitary versions of the discrete trigonometric transforms.

By performing symmetric convolution with unitary rather than convolutional transforms,

faster computational and even direct hardware realizations of image reconstruction filters
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are possible based on existing discrete cosine transform chips.  These hardware realiza-

tions can then be used to improve the capability of ground-based imaging systems that

surveil space-borne objects, an Air Force function well grounded in service and military

doctrine as well as military and national strategy.

Now that the symmetric convolution-multiplication property exists for unitary trans-

forms, some directions for future research might include recasting existing inverse and

scalar Wiener filters3 in terms of the new transforms.  Another limitation that also needs

to be overcome through future research efforts is to expand the noise model upon which

the scalar Wiener filter is based to include photon-dependent Poisson noise.4  Enhancing

the noise model will make these already improved techniques even more robust.

Notes

1 Stephen A. Martucci, “Symmetric Convolution and the Discrete Sine and Cosine
Transforms,” IEEE Transactions on Signal Processing 42, no. 5 (May 1994):  1038–
1051.

2 T.M. Foltz and B.M. Welsh, “Image Reconstruction Using Symmetric Convolution
and Discrete Trigonometric Transforms,” Journal of the Optical Society of America A 15,
no. 11 (November 1998):  2827–2840.

3 Ibid.
4 Michael C. Roggemann and Byron M. Welsh, Imaging Through Turbulence.

(Boca Raton, Fla.:  CRC Press, 1996), 44–54.
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Appendix A

Convolutional and Unitary Discrete Trigonometric Transforms

This appendix provides definitions of the sixteen convolutional versions of the dis-

crete trigonometric transforms (DTTs) and the sixteen unitary versions of the DTTs.

Martucci1 defines the sixteen convolutional versions of the discrete cosine and sine

transforms (DCTs and DSTs) by their thnm −  elements as:

[ ] �
�
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�=
N
mnknmne

πcos21C , , , 1, 0,   , Nnm �= (A1)

[ ] �
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� +=
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1

2
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[ ] �
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and [ ] �
�
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�

−
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12
))((2sin2 2

1
2
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πS , .1 , 1, 0,   , −= Nnm � (A16)

The constants in Eqs. (A1)–(A16) are defined by

�
� =

=
otherwise     ,1

 ,0    ,2
1 Np

k p and �
� −=

=
otherwise,     ,1

1    ,2
1 Np

lp (A17)

where p can be either m or n.  The matrices denoted by C  and S  represent DCT and

DST matrices respectively, the numeric subscripts ‘1–4’ represent types I–IV for the

convolutional versions of the DTTs, and the subscripts ‘e’ and ‘o’ denote even and odd

length versions of the DTT matrices.
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Wang and Hunt2 define the sixteen unitary versions of the DTTs by their thnm −

elements as:
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N
ll nm
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The definitions in Eqs. (A18)–(A33) differ slightly in appearance from those given by

Wang and Hunt,3 but they produce exactly the same unitary transform matrices.  The dif-

ferences arise because Eqs. (A18)–(A33) use the constants given by Eq. (A17) and the

indexing on certain of the DST matrices is different.  The only reason for defining the

DTT matrices differently is to allow a more direct comparison to Martucci’s convolu-

tional versions of the DTTs.4

Notes
1 Stephen A. Martucci, “Symmetric Convolution and the Discrete Sine and Cosine

Transforms,” IEEE Transactions on Signal Processing 42, no. 5 (May 1994):  1038–
1051.

2 Zhongde Wang and B.R. Hunt, “The Discrete W Transform,” Applied Mathematics
and Computation 16, no. 1 (January 1985):  33–35.

3 Ibid.
4 Martucci, 1050.
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Appendix B

Forty Cases of Symmetric Convolution

This appendix lists the forty cases of symmetric convolution.1  The cases, appearing

in vector-matrix form,2 are:
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1 Stephen A. Martucci, “Symmetric Convolution and the Discrete Sine and Cosine
Transforms,” IEEE Transactions on Signal Processing 42, no. 5 (May 1994):  1050.

2 Maj Thomas M. Foltz, “Trigonometric Transforms for Image Reconstruction,”
Ph.D. Dissertation, AFIT/DS/ENG/98-04.  Air Force Institute of Technology (AETC),
Wright-Patterson AFB, Ohio, June 1998, 1–122.

and
Foltz and B.M. Welsh, “Symmetric Convolution of Asymmetric Multidimensional

Sequences Using Discrete Trigonometric Transforms,” to appear in IEEE Transactions
on Image Processing 8, no. 5 (May1999).
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Appendix C

Derivation of Diagonal Relationships between

Convolutional and Unitary Transform Matrices

This appendix displays derivations of the nine diagonal relationships that exist be-

tween the convolutional and unitary versions of the discrete cosine and sine transforms

(DCTs and DSTs).  The derivation in Chapter 4 showing that the matrix 2A  is diagonal is

repeated here for completeness.

Diagonal Relationship for Type-II Even-Length DCT

Consider the matrix .II22
T

eeCCA =   Recall the definitions for the thnm −  elements of

the NN ×  type-II even-length DCT matrices from Appendix A:

[ ] �
�
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�
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N
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N mmne
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II
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for .1 , 1, 0,   , −= Nnm �   The constant, ,mk  in Eq. (C2) is defined in Eq. (A17).  It fol-

lows from Eqs. (C1) and (C2) that
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The thnm −  element of the product T
ee II22 CCA =  is expressible as
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Because the matrix eIIC  is unitary, Eq. (C5) can be recast as

[ ] ),(2
2 nm

k
N

m
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where )( nm −δ  is a Kronecker delta function.  From Eq. (C6), 2A  is clearly diagonal

with the general result for its thnm −  element given by
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Diagonal Relationship for Type-IV Even-Length DCT

Consider the matrix .IV44
T

eeCCA =   Recall the definitions for the thnm −  elements of

the NN ×  type-IV even-length DCT matrices from Appendix A:
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for .1 , 1, 0,   , −= Nnm �   It follows from Eqs. (C8) and (C9) that

[ ] [ ] .2 IV4 mnemne N CC = (C10)

The thnm −  element of the product T
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Because the matrix eIVC  is unitary, Eq. (C12) can be recast as

[ ] ),(24 nmNmn −= δA (C13)

from which it is clear that .24 IA N=

Diagonal Relationship for Type-I Even-Length DST

Consider the matrix .I15
T
eeSSA =   Recall the definitions for the thnm −  elements of

the 11 −×− NN  type-I even-length DST matrices from Appendix A:
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for .1 , 2, 1,   , −= Nnm �   It follows from Eqs. (C14) and (C15) that

[ ] [ ] .2 I1 mnemne N SS = (C16)

The thnm −  element of the product T
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which after substituting the result of Eq. (C16) becomes
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Because the matrix eIS  is unitary, Eq. (C18) can be recast as

[ ] ),(25 nmNmn −= δA (C19)

from which it is clear that .25 IA N=

Diagonal Relationship for Type-II Even-Length DST

Consider the matrix .II26
T

eeSSA =   Recall the definitions for the thnm −  elements of

the NN ×  type-II even-length DST matrices from Appendix A:
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for Nm  , 2, 1,  �=  and .1 , 1, 0,  −= Nn �   The constant, ,mk  in Eq. (C21) is defined in

Eq. (A17).  It follows from Eqs. (C20) and (C21) that
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which after substituting the result of Eq. (C22) becomes
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Because the matrix eIIS  is unitary, Eq. (C24) can be recast as
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Diagonal Relationship for Type-IV Even-Length DST

Consider the matrix .IV48
T

eeSSA =   Recall the definitions for the thnm −  elements of

the NN ×  type-IV even-length DST matrices from Appendix A:
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for .1 , 1, 0,   , −= Nnm �   It follows from Eqs. (C27) and (C28) that

[ ] [ ] .2 IV4 mnemne N SS = (C29)

The thnm −  element of the product T
ee IV48 SSA =  is expressible as



47
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which after substituting the result of Eq. (C29) becomes
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Because the matrix eIVS  is unitary, Eq. (C31) can be recast as

[ ] ),(28 nmNmn −= δA (C32)

from which it is clear that .28 IA N=

Diagonal Relationship for Type-IV Odd-Length DCT

Consider the matrix .IV412
T

ooCCA =   Recall the definitions for the thnm −  elements

of the 11 −×− NN  type-IV odd-length DCT matrices from Appendix A:
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for .2 , 1, 0,   , −= Nnm �   It follows from Eqs. (C33) and (C34) that
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The thnm −  element of the product T
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which after substituting the result of Eq. (C35) becomes
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Because the matrix oIVC  is unitary, Eq. (C37) can be recast as

[ ] ),(1212 nmNmn −−= δA (C38)

from which it is clear that .1212 IA −= N

Diagonal Relationship for Type-I Odd-Length DST

Consider the matrix .I113
T
oo SSA =   Recall the definitions for the thnm −  elements of

the 11 −×− NN  type-I odd-length DST matrices from Appendix A:
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for .1 , 2, 1,   , −= Nnm �   It follows from Eqs. (C39) and (C40) that
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Because the matrix oIS  is unitary, Eq. (C43) can be recast as
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[ ] ),(1213 nmNmn −−= δA (C44)

from which it is clear that .1213 IA −= N

Diagonal Relationship for Type-II Odd-Length DST

Consider the matrix .II214
T

ooSSA =   Recall the definitions for the thnm −  elements of

the 11 −×− NN  type-II odd-length DST matrices from Appendix A:
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for 1 , 2, 1,  −= Nm �  and .2 , 1, 0,  −= Nn �   It follows from Eqs. (C45) and (C46) that
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which after substituting the result of Eq. (C47) becomes
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Because the matrix oIIS  is unitary, Eq. (C49) can be recast as

[ ] ),(1214 nmNmn −−= δA (C50)

for ,1 , 2, 1,   , −= Nnm �  from which it is clear that .1214 IA −= N
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Diagonal Relationship for Type-III Odd-Length DST

Consider the matrix .III315
T

oo SSA =   Recall the definitions for the thnm −  elements of

the 11 −×− NN  type-III odd-length DST matrices from Appendix A:

[ ] �
�
�

�

−
+=

12
)(2sin2 2

1

3 N
nm

mno
πS , (C51)

and [ ] �
�
�

�

−
+

−
=

12
)(2sin

12
2 2

1

III N
nm

Nmno
πS , (C52)

for 2 , 1, 0,  −= Nm �  and .1 , 2, 1,  −= Nn �   It follows from Eqs. (C51) and (C52) that

[ ] [ ] .12 III3 mnomno N SS −= (C53)

Observe that both the convolutional and unitary type-III DSTs are the transposes of type-

II DSTs so that T
oo 23 SS =  and .IIIII

T
oo SS =   The matrix that relates the convolutional and

unitary type-III DSTs can thus be expressed in terms of type-II DSTs as =15A ,II2 o
T
o SS  or

equivalently ,2II15 o
T

o
T SSA =  so that substituting the result of Eq. (C53) produces

,12

12 IIII15

I

SSA

−=

−=

N

N o
T

o
T

(C54)

for ,2 , 1, 0,   , −= Nnm �  which is clearly diagonal so that .1215 IA −= N

These nine derivations demonstrate the general diagonal relationships that exist be-

tween convolutional and unitary discrete trigonometric transforms (DTTs).  Seven DTTs

do not have a diagonal relationship in general, which can be easily demonstrated by

counterexample.
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Appendix D

Derivation of Symmetric Convolution Cases

Based on Unitary Transform Matrices

This appendix presents derivations of the eighteen cases of symmetric convolution

that can be based on unitary transforms.  The appendix details each of the forty cases

from Appendix B and provides reasons why each case does or does not exist in terms of

unitary transform matrices.

Even-Length Cases

Case 1

Case 1, ,1
1

1 1
θθθθee e

CCd CHHHH−=  is not expressible in terms of unitary transform matrices

because the matrix T
ee I11 CCA =  is not, in general, diagonal.

Case 2

Case 2, which states that

,1
1

1 1
θθθθee e

SSd CHHHH−= (D1)

is expressible in terms of unitary transform matrices.  The matrix { } diag 11

r
WSWSee

hCC =HHHH

normally contains 1+N  samples ranging from 0 to N along its diagonal, but here only

the samples from 1 to 1−N  need to be retained because the underlying symmetry of the
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vector θθθθe1S  forces zeros at 0=m  and Nm =  which cancel the values of r
WSWSehC1  at

0=m  and .Nm =   Thus each matrix in Eq. (D1) has compatible dimension

×−1N .1−N   Substituting the fact that ee I51 SAS =  into Eq. (D1) produces

,I5
1

5
1

I 1
θθθθee e

SAASd CHHHH−−= (D2)

where the three interior matrices in Eq. (D2) commute, resulting in

,I
1

I 1
θθθθee e

SSd CHHHH−= (D3)

which is the desired result based on unitary transform matrices for Case 2.

Case 3

Case 3, ,1
1

1 1
θθθθee e

SCd SHHHH−−=  is not expressible in terms of unitary transform matrices

because the matrix T
ee I11 CCA =  is not, in general, diagonal.

Case 4

Case 4, which states that

,2
1

2 1
θθθθee e

CCd CHHHH−= (D4)

is expressible in terms of unitary transform matrices.  The matrix { } diag 11

r
WSWSee

hCC =HHHH

normally contains 1+N  samples ranging from 0 to N along its diagonal, but here only

the first N samples from 0 to 1−N  need to be retained because the underlying symmetry

of the vector θθθθe2C  forces a zero at Nm =  which cancels the value of r
WSWSehC1  at .Nm =

Thus each matrix in Eq. (D4) has compatible dimension .NN ×   Substituting the fact that

ee II22 CAC =  into Eq. (D4) produces

,II2
1

2
1

II 1
θθθθee e

CAACd CHHHH−−= (D5)
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where the three interior matrices in Eq. (D5) commute, resulting in

,II
1

II 1
θθθθee e

CCd CHHHH−= (D6)

which is the desired result based on unitary transform matrices for Case 4.

Case 5

Case 5, which states that

,2
1

2 1
θθθθee e

CSd SHHHH−= (D7)

is expressible in terms of unitary transform matrices.  The matrix { } diag 11

r
WAWAee

hSS =HHHH

contains 1−N  samples ranging from 1 to 1−N  along its diagonal, so that only the last

1−N  samples of the vector θθθθe2C  from 1 to 1−N  need to be retained because the un-

derlying symmetry of the vector r
WAWAehS1  forces a zero at 0=m  which cancels the val-

ues of the vector θθθθe2C  at .0=m   Thus each matrix in Eq. (D7) has compatible dimen-

sion .11 −×− NN   Substituting the facts that ee II62 SAS =  and ee II22 CAC =  into

Eq. (D7) produces

,II2
1

6
1

II 1
θθθθee e

CAASd SHHHH−−= (D8)

where the three interior matrices in Eq. (D8) commute, resulting in

,II
1

II 1
θθθθee e

CSd SHHHH−= (D9)

because the matrices 2A  and 6A  are identical over index values of 1 to ,1−N  and which

is the desired result based on unitary transform matrices for Case 5.

Case 6

Case 6, which states that

,2
1

2 1
θθθθee e

SSd CHHHH−= (D10)
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is expressible in terms of unitary transform matrices.  The matrix { } diag 11

r
WSWSee

hCC =HHHH

normally contains 1+N  samples ranging from 0 to N along its diagonal, but here only

the last N samples from 1 to N need to be retained because the underlying symmetry of

the vector θθθθe2S  forces a zero at 0=m  which cancels the value of r
WSWSehC1  at .0=m

Thus each matrix in Eq. (D10) has compatible dimension .NN ×   Substituting the fact

that ee II62 SAS =  into Eq. (D10) produces

,II6
1

6
1

II 1
θθθθee e

SAASd CHHHH−−= (D11)

where the three interior matrices in Eq. (D11) commute, resulting in

,II
1

II 1
θθθθee e

SSd CHHHH−= (D12)

which is the desired result based on unitary transform matrices for Case 6.

Case 7

Case 7, which states that

,2
1

2 1
θθθθee e

SCd SHHHH−−= (D13)

is expressible in terms of unitary transform matrices.  The matrix { } diag 11

r
WAWAee

hSS =HHHH

contains 1−N  samples ranging from 1 to 1−N  along its diagonal, so that only the first

1−N  samples of the vector θθθθe2S  from 1 to 1−N  need to be retained because the un-

derlying symmetry of the vector r
WAWAehS1  forces a zero at Nm =  which cancels the val-

ues of the vector θθθθe2S  at .Nm =   Thus each matrix in Eq. (D13) has compatible dimen-

sion .11 −×− NN   Substituting the facts that ee II22 CAC =  and ee II62 SAS =  into

Eq. (D13) produces

,II6
1

2
1

II 1
θθθθee e

SAACd SHHHH−−−= (D14)
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where the three interior matrices in Eq. (D14) commute, resulting in

,II
1

II 1
θθθθee e

SCd SHHHH−−= (D15)

because the matrices 2A  and 6A  are identical over index values of 1 to ,1−N  and which

is the desired result based on unitary transform matrices for Case 7.

Case 8

Case 8, ,2
1

1 2
θθθθee e

CCd CHHHH−=  is not expressible in terms of unitary transform matrices

because the matrix T
ee I11 CCA =  is not, in general, diagonal.

Case 9

Case 9, which states that

,2
1

1 2
θθθθee e

CSd SHHHH−= (D16)

is expressible in terms of unitary transform matrices.  The matrix { } diag 22

r
HAHAee

hSS =HHHH

contains N samples ranging from 1 to N along its diagonal, so that only the last 1−N

samples of the vector θθθθe2C  from 1 to 1−N  need to be retained because the underlying

symmetry of the vector r
HAHAehS2  forces a zero at 0=m  which cancels the values of the

vector θθθθe2C  at .0=m   Thus each matrix in Eq. (D16) has compatible dimension

×−1N .1−N   Substituting the facts that ee I51 SAS =  and ee II22 CAC =  into Eq. (D16)

produces

,II2
1

5
1

I 2
θθθθee e

CAASd SHHHH−−= (D17)

where the three interior matrices in Eq. (D17) commute, resulting in

,II
1

I 2
θθθθee e

CSd SHHHH−= (D18)
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because the matrices 2A  and 5A  are identical over index values of 1 to ,1−N  and which

is the desired result based on unitary transform matrices for Case 9.

Case 10

Case 10, ,2
1

1 2
θθθθee e

SCd SHHHH−−=  is not expressible in terms of unitary transform matri-

ces because the matrix T
ee I11 CCA =  is not, in general, diagonal.

Case 11

Case 11, ,3
1

3 3
θθθθee e

CCd CHHHH−=  is not expressible in terms of unitary transform matrices

because the matrix T
ee III33 CCA =  is not, in general, diagonal.

Case 12

Case 12, ,3
1

3 3
θθθθee e

SSd CHHHH−=  is not expressible in terms of unitary transform matrices

because the matrices T
ee III33 CCA =  and T

ee III37 SSA =  are not, in general, diagonal.

Case 13

Case 13, ,3
1

3 3
θθθθee e

SCd SHHHH−−=  is not expressible in terms of unitary transform matri-

ces because the matrices T
ee III33 CCA =  and T

ee III37 SSA =  are not, in general, diagonal.

Case 14

Case 14, which states that

,4
1

4 3
θθθθee e

CCd CHHHH−= (D19)

is expressible in terms of unitary transform matrices.  The matrix { } diag 33

r
WSWAee

hCC =HHHH

contains N samples ranging from 0 to 1−N  along its diagonal, so that each matrix in
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Eq. (D19) has compatible dimension .NN ×   Substituting the fact that ee IV44 CAC =  into

Eq. (D19) produces

,IV4
1

4
1

IV 3
θθθθee e

CAACd CHHHH−−= (D20)

where the three interior matrices in Eq. (D20) commute, resulting in

,IV
1

IV 3
θθθθee e

CCd CHHHH−= (D21)

which is the desired result based on unitary transform matrices for Case 14.

Case 15

Case 15, which states that

,4
1

4 3
θθθθee e

CSd SHHHH−= (D22)

is expressible in terms of unitary transform matrices.  The matrix { } diag 33

r
WAWSee

hSS =HHHH

contains N samples ranging from 0 to 1−N  along its diagonal, so that each matrix in

Eq. (D22) has compatible dimension .NN ×   Substituting the facts that ee IV84 SAS =  and

ee IV44 CAC =  into Eq. (D22) produces

,IV4
1

8
1

IV 3
θθθθee e

CAASd SHHHH−−= (D23)

where the three interior matrices in Eq. (D23) commute, resulting in

,IV
1

IV 3
θθθθee e

CSd SHHHH−= (D24)

because the matrices 4A  and 8A  are identical, and which is the desired result based on

unitary transform matrices for Case 15.

Case 16

Case 16, which states that

,4
1

4 3
θθθθee e

SSd CHHHH−= (D25)
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is expressible in terms of unitary transform matrices.  The matrix { } diag 33

r
WSWAee

hCC =HHHH

contains N samples ranging from 0 to 1−N  along its diagonal, so that each matrix in

Eq. (D25) has compatible dimension .NN ×   Substituting the fact that ee IV84 SAS =  into

Eq. (D25) produces

,IV8
1

8
1

IV 3
θθθθee e

SAASd CHHHH−−= (D26)

where the three interior matrices in Eq. (D26) commute, resulting in

,IV
1

IV 3
θθθθee e

SSd CHHHH−= (D27)

which is the desired result based on unitary transform matrices for Case 16.

Case 17

Case 17, which states that

θθθθee e 4
1

4 3
SCd SHHHH−−= (D28)

is expressible in terms of unitary transform matrices.  The matrix { } diag 33

r
WAWSee

hSS =HHHH

contains N samples ranging from 0 to 1−N  along its diagonal, so that each matrix in

Eq. (D28) has compatible dimension .NN ×   Substituting the facts that ee IV44 CAC =  and

ee IV84 SAS =  into Eq. (D28) produces

,IV8
1

4
1

IV 3
θθθθee e

SAACd SHHHH−−−= (D29)

where the three interior matrices in Eq. (D29) commute, resulting in

,IV
1

IV 3
θθθθee e

SCd SHHHH−−= (D30)

because the matrices 4A  and 8A  are identical, and which is the desired result based on

unitary transform matrices for Case 17.
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Case 18

Case 18, ,4
1

3 4
θθθθee e

CCd CHHHH−=  is not expressible in terms of unitary transform matrices

because the matrix T
ee III33 CCA =  is not, in general, diagonal.

Case 19

Case 19, ,4
1

3 4
θθθθee e

CSd SHHHH−=  is not expressible in terms of unitary transform matrices

because the matrix T
ee III37 SSA =  is not, in general, diagonal.

Case 20

Case 20, ,4
1

3 4
θθθθee e

SCd SHHHH−−=  is not expressible in terms of unitary transform matri-

ces because the matrix T
ee III33 CCA =  is not, in general, diagonal.

Odd-Length Cases

Case 21

Case 21, ,1
1

1 1
θθθθoo o

CCd CHHHH−=  is not expressible in terms of unitary transform matrices

because the matrix T
oo I19 CCA =  is not, in general, diagonal.

Case 22

Case 22, which states that

,1
1

1 1
θθθθoo o

SSd CHHHH−= (D31)

is expressible in terms of unitary transform matrices.  The matrix { } diag 11

r
WSHSoo

hCC =HHHH

normally contains N samples ranging from 0 to 1−N  along its diagonal, but here only

the samples from 1 to 1−N  need to be retained because the underlying symmetry of the
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vector θθθθo1S  forces a zero at 0=m  which cancels the value of r
WSHSohC1  at .0=m   Thus

each matrix in Eq. (D31) has compatible dimension ×−1N .1−N   Substituting the fact

that oo I131 SAS =  into Eq. (D31) produces

,I13
1

13
1

I 1
θθθθoo o

SAASd CHHHH−−= (D32)

where the three interior matrices in Eq. (D32) commute, resulting in

,I
1

I 1
θθθθoo o

SSd CHHHH−= (D33)

which is the desired result based on unitary transform matrices for Case 22.

Case 23

Case 23, ,1
1

1 1
θθθθoo o

SCd SHHHH−−=  is not expressible in terms of unitary transform matrices

because the matrix T
oo I19 CCA =  is not, in general, diagonal.

Case 24

Case 24, ,1
1

2 2
θθθθoo o

CCd CHHHH−=  is not expressible in terms of unitary transform matrices

because the matrices T
oo I19 CCA =  and T

oo II210 CCA =  are not, in general, diagonal.

Case 25

Case 25, which states that

,1
1

2 2
θθθθoo o

SSd CHHHH−= (D34)

is expressible in terms of unitary transform matrices.  The matrix { } diag 22

r
HSWSoo

hCC =HHHH

normally contains N samples ranging from 0 to 1−N  along its diagonal, but here only

the samples from 1 to 1−N  need to be retained because the underlying symmetry of the

vector θθθθo1S  forces a zero at 0=m  which cancels the value of r
HSWSohC2  at .0=m   Thus
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each matrix in Eq. (D34) has compatible dimension ×−1N .1−N   Substituting the facts

that oo II142 SAS =  and oo I131 SAS =  into Eq. (D34) produces

,I13
1

14
1

II 2
θθθθoo o

SAASd CHHHH−−= (D35)

where the three interior matrices in Eq. (D35) commute, resulting in

,I
1

II 2
θθθθoo o

SSd CHHHH−= (D36)

because the matrices 13A  and 14A  are identical, and which is the desired result based on

unitary transform matrices for Case 25.

Case 26

Case 26, which states that

,2
1

2 1
θθθθoo o

SSd CHHHH−= (D37)

is expressible in terms of unitary transform matrices.  The matrix { } diag 11

r
WSHSoo

hCC =HHHH

normally contains N samples ranging from 0 to 1−N  along its diagonal, but here only

the samples from 1 to 1−N  need to be retained because the underlying symmetry of the

vector θθθθo2S  forces a zero at 0=m  which cancels the value of r
WSHSohC1  at .0=m   Thus

each matrix in Eq. (D37) has compatible dimension ×−1N .1−N   Substituting the fact

that oo II142 SAS =  into Eq. (D37) produces

,II14
1

14
1

II 1
θθθθoo o

SAASd CHHHH−−= (D38)

where the three interior matrices in Eq. (D38) commute, resulting in

,II
1

II 1
θθθθoo o

SSd CHHHH−= (D39)

which is the desired result based on unitary transform matrices for Case 26.
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Case 27

Case 27, ,2
1

2 1
θθθθoo o

SCd SHHHH−−=  is not expressible in terms of unitary transform matri-

ces because the matrix T
oo II210 CCA =  is not, in general, diagonal.

Case 28

Case 28, ,2
1

1 2
θθθθoo o

CCd CHHHH−=  is not expressible in terms of unitary transform matrices

because the matrices T
oo I19 CCA =  and T

oo II210 CCA =  are not, in general, diagonal.

Case 29

Case 29, which states that

,2
1

1 2
θθθθoo o

SSd CHHHH−= (D40)

is expressible in terms of unitary transform matrices.  The matrix { } diag 22

r
HSWSoo

hCC =HHHH

normally contains N samples ranging from 0 to 1−N  along its diagonal, but here only

the samples from 1 to 1−N  need to be retained because the underlying symmetry of the

vector θθθθo2S  forces a zero at 0=m  which cancels the value of r
HSWSohC2  at .0=m   Thus

each matrix in Eq. (D40) has compatible dimension ×−1N .1−N   Substituting the facts

that oo I131 SAS =  and oo II142 SAS =  into Eq. (D40) produces

,II14
1

13
1

I 2
θθθθoo o

SAASd CHHHH−−= (D41)

where the three interior matrices in Eq. (D41) commute, resulting in

,II
1

I 2
θθθθoo o

SSd CHHHH−= (D42)

because the matrices 13A  and 14A  are identical, and which is the desired result based on

unitary transform matrices for Case 29.
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Case 30

Case 30, ,2
1

1 2
θθθθoo o

SCd SHHHH−−=  is not expressible in terms of unitary transform matri-

ces because the matrix T
oo I19 CCA =  is not, in general, diagonal.

Case 31

Case 31, ,3
1

3 3
θθθθoo o

CCd CHHHH−=  is not expressible in terms of unitary transform matrices

because the matrix T
oo III311 CCA =  is not, in general, diagonal.

Case 32

Case 32, which states that

,3
1

3 3
θθθθoo o

SSd CHHHH−= (D43)

is expressible in terms of unitary transform matrices.  The matrix { } diag 33

r
WSHAoo

hCC =HHHH

normally contains N samples ranging from 0 to 1−N  along its diagonal, but here only

the samples from 0 to 2−N  need to be retained because the underlying symmetry of the

vector θθθθo3S  forces a zero at 1−= Nm  which cancels the value of r
WSHAohC3  at =m .1−N

Thus each matrix in Eq. (D43) has compatible dimension ×−1N .1−N   Substituting the

fact that oo III153 SAS =  into Eq. (D43) produces

,III15
1

15
1

III 3
θθθθoo o

SAASd CHHHH−−= (D44)

where the three interior matrices in Eq. (D44) commute, resulting in

,III
1

III 3
θθθθoo o

SSd CHHHH−= (D45)

which is the desired result based on unitary transform matrices for Case 32.
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Case 33

Case 33, ,3
1

3 3
θθθθoo o

SCd SHHHH−−=  is not expressible in terms of unitary transform matri-

ces because the matrix T
oo III311 CCA =  is not, in general, diagonal.

Case 34

Case 34, which states that

,4
1

4 3
θθθθoo o

CCd CHHHH−= (D46)

is expressible in terms of unitary transform matrices.  The matrix { } diag 33

r
WSHAoo

hCC =HHHH

normally contains N samples ranging from 0 to 1−N  along its diagonal, but here only

the samples from 0 to 2−N  need to be retained because the underlying symmetry of the

vector θθθθo4C  forces a zero at 1−= Nm  which cancels the value of r
WSHAohC3  at

=m .1−N   Thus each matrix in Eq. (D46) has compatible dimension ×−1N .1−N

Substituting the fact that oo IV124 CAC =  into Eq. (D46) produces

,IV12
1

12
1

IV 3
θθθθoo o

CAACd CHHHH−−= (D47)

where the three interior matrices in Eq. (D47) commute, resulting in

,IV
1

IV 3
θθθθoo o

CCd CHHHH−= (D48)

which is the desired result based on unitary transform matrices for Case 34.

Case 35

Case 35, ,3
1

4 4
θθθθoo o

SSd CHHHH−=  is not expressible in terms of unitary transform matrices

because the matrix T
oo IV416 SSA =  is not, in general, diagonal.
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Case 36

Case 36, ,3
1

4 4
θθθθoo o

CSd SHHHH−=  is not expressible in terms of unitary transform matrices

because the matrix T
oo IV416 SSA =  is not, in general, diagonal.

Case 37

Case 37, which states that

,3
1

4 4
θθθθoo o

SCd SHHHH−−= (D49)

is expressible in terms of unitary transform matrices.  The matrix { } diag 44

r
HAWSoo

hSS =HHHH

normally contains N samples ranging from 0 to 1−N  along its diagonal, but here only

the samples from 0 to 2−N  need to be retained because the underlying symmetry of the

vector θθθθo3S  forces a zero at 1−= Nm  which cancels the value of r
HAWSohS4  at

=m .1−N   Thus each matrix in Eq. (D49) has compatible dimension ×−1N .1−N

Substituting the facts that oo IV124 CAC =  and oo III153 SAS =  into Eq. (D49) produces

,III15
1

12
1

IV 4
θθθθoo o

SAACd SHHHH−−−= (D50)

where the three interior matrices in Eq. (D50) commute, resulting in

,III
1

IV 4
θθθθoo o

SCd SHHHH−−= (D51)

because the matrices 12A  and 15A  are identical, and which is the desired result based on

unitary transform matrices for Case 37.

Case 38

Case 38, ,4
1

3 4
θθθθoo o

CCd CHHHH−=  is not expressible in terms of unitary transform matrices

because the matrix T
oo III311 CCA =  is not, in general, diagonal.
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Case 39

Case 39, which states that

,4
1

3 4
θθθθoo o

CSd SHHHH−= (D52)

is expressible in terms of unitary transform matrices.  The matrix { } diag 44

r
HAWSoo

hSS =HHHH

normally contains N samples ranging from 0 to 1−N  along its diagonal, but here only

the samples from 0 to 2−N  need to be retained because the underlying symmetry of the

vector θθθθo4C  forces a zero at 1−= Nm  which cancels the value of r
HAWSohS4  at

=m .1−N   Thus each matrix in Eq. (D52) has compatible dimension ×−1N .1−N

Substituting the facts that oo III153 SAS =  and oo IV124 CAC =  into Eq. (D52) produces

,IV12
1

15
1

III 4
θθθθoo o

CAASd SHHHH−−= (D53)

where the three interior matrices in Eq. (D53) commute, resulting in

,IV
1

III 4
θθθθoo o

CSd SHHHH−= (D54)

because the matrices 12A  and 15A  are identical, and which is the desired result based on

unitary transform matrices for Case 39.

Case 40

Case 40, ,4
1

3 4
θθθθoo o

SCd SHHHH−−=  is not expressible in terms of unitary transform matri-

ces because the matrices T
oo III311 CCA =  and T

oo IV416 SSA =  are not, in general, diagonal.   
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